131. The Synthesis of Dibenzyl *trans*-{7-oxo-3-phenyl-6-phenylacetamido-1-azabicyclo [3.2.0]heptane}-2, 2-dicarboxylate (Carbapenam)

by Gholam Hosein Hakimelahi¹), Antonio Ugolini and George Just
Department of Chemistry, McGill University Montreal, Quebec, Canada H3A 2K6

(26.X.81)

Summary

The synthesis of the title compound is described.

The nuclear analogues of penicillin and cephalosporin in which the S-atom is replaced by C-atom have been reported [1] [2]. The S-atom may be replaced by O- or C-atoms without substantial loss of antimicrobial activity [3]. We now report a short synthesis of the carbapenam 8 using the (2-Hydroxy-2-phenylethyl)-azetidinone 5 as a key intermediate.

We chose readily available dibenzyl aminomalonate (1) as the starting material. It was treated with phenylpropargyl aldehyde and the corresponding *Schiff* base upon reaction with azidoacetyl chloride [4], using the methods described by *Doyle et al.* [5], gave a (4:1)-mixture of the dibenzyl oxoazetidinylmalonate 2a and 2b (25% from amino ester 1). Using the major *trans*-product 2a, we were hoping to achieve the synthesis of the carbapenam 8. Thus, the azide function in 2a was reduced (H_2S /triethylamine [6]) and the resulting amine directly acylated to the phenylacetamido- β -lactam 3. Compound 3 was then transformed to the ketone 4 with mercuric trifluoroacetate/mercuric oxide [7] in ethyl acetate. Sodium borohydride reduction of 4 afforded (2-hydroxy-2-phenylethyl)azetidinone 5 as a mixture of two isomers which was treated with excess methanesulfonyl chloride/pyridine in methylene chloride. Instead of the expected methanesulfonate 6, the (2-chloro-2-phenylethyl)- β -lactam 7 was isolated along with some styryl- β -lactam 9. This suggested the S_N 2 displacement of the methanesulfonate group in 6 by chloride ion from pyridinium hydrochloride.

Cyclization of compound 7 to the corresponding carbapenam 8 was achieved by means of triethylamine in methylene chloride at 25°. All attempts to split off the benzyl groups of 8 failed. The NMR. spectrum of 8 (Figure) showed the presence of a single epimer, the structure of which was consistent with that depicted. Decoupling experiments permitted assignment of the coupling constants.

Author to whom correspondence should be addressed.

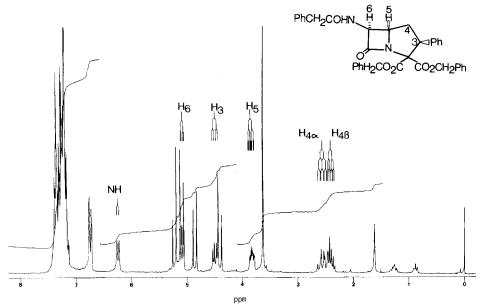


Figure. 200 MHz 1H-NMR. spectrum of 8, in CDCl3

Experimental Part

General procedures: see [8].

Preparation of trans- and cis-benzyl (3-azido-2-oxo-4-phenylethynyl-1-azetidinyl)malonate (2a resp. 2b). The procedure was identical to that previously described [9] for the conversion of dibenzyl aminomalonate to the corresponding N-substituted 3-azido-4-styryl-cis-β-lactam. β-Lactams 2a and 2b were separated by flash chromatography using AcOEt/petroleum ether 2:7. trans-β-Lactam 2a was obtained in 20% yield. – IR. (film): 2220 (C=C), 2110 (azide), 1785 (β-lactam), 1750 (ester). – NMR. (200 MHz, CDCl₃): 4.81 (d, J=2 Hz, 1H, H-C(4)); 4.89 (d, J=2 Hz, 1H, H-C(3)); 5.11 and 5.23 (2 AB-systems, 4 H, 2 PhCH₂); 5.30 (s, 1H, CHCOO); 7.15-7.38 (m, 15 H, 3 C₆H₅). cis-β-Lactam 2b was obtained in 5% yield. – IR.: identical to that of 2a. – NMR.: similar to that of 2a except for the coupling constants of H-C(3) and H-C(4), J=5 Hz.

Preparation of benzyl trans-(2-oxo-3-phenylacetamido-4-phenylethynyl-1-azetidinyl)malonate (3). H₂S was bubbled for 10 min into a solution of 2a (0.946 g, 1.9 mmol) in CH₂Cl₂ (60 ml) and NEt₃ (0.193 g, 1.9 mmol) at 0°. The solution was allowed to warm, and after stirring for 1 h at r.t., N₂ was bubbled for 0.5 h. Pyridine (0.2 g, 2.5 mmol) was added at 0° followed by phenylacetyl chloride (0.386 g, 2.5 mmol) dropwise over 5 min. After stirring for 1 h at 25°, the solution was washed with water (3×40 ml) and brine (50 ml) then treated with MgSO₄ and charcoal. Filtration and evaporation followed by purification by flash chromatography with AcOEt/petroleum ether 3:7 gave 0.882 g (85%) of 3 as a foam. – IR. (film): 3300 (NH), 1785 (β -lactam), 1755 (ester), 1670 (amide). – NMR. (200 MHz, CDCl₃): 3.62 (s, 2 H, PhC H_2 CO); 4.87 (d, J=2.5 Hz, 1H, H-C(4)); 5.00 (d×d, J=2.5 and 8.0 Hz, 1H, H-C(3)); 5.09, 5.22 (2 d B-systems, 4 H, 2 PhC H_2); 5.27 (s, 1H, CHCOO); 6.28 (d, J=8.0 Hz, 1H, NH); 7.15-7.45 (m, 20 H, 4 C₆H₅).

Preparation of benzyl trans- $(2-oxo-3-phenylacetamido-4-phenacyl-1-azetidinyl)malonate (4). A mixture of 3 (0.551 g, 0.94 mmol), HgO (0.406 g, 1.9 mmol) and (CF₃COO)₂Hg (0.803 g, 1.9 mmol) in EtOAc (50 ml), containing water (0.4 ml), was stirred at 25° for 5 h. The mixture was then cooled to 0° and H₂S was bubbled through for 10 min. After stirring at 25° for 0.5 h HgS was removed by filtration and the solvent evaporated to give 0.362 g (64%) of 4, after flash chromatography AcOEt/petroleum ether 3:7. – IR. (film): 3300 (NH), 1780 (<math>\beta$ -lactam), 1750 (ester), 1680 (amide and phenyl ketone). – NMR. (200 MHz, CDCl₃): 3.60 (d, d = 7.0 Hz, 2 H, PhCOCd₂); 3.61 (d, 2 H, PhCd₂); 4.36

 $(d \times t, J = 2.5 \text{ and } 7.0 \text{ Hz}, 1 \text{H}, \text{H}_2\text{C}-\text{C}(4)); 4.69 \ (d \times d, J = 2.5 \text{ and } 6.5 \text{ Hz}, 1 \text{H}, \text{H}-\text{C}(3)); 5.11, 5.24 \ (2 AB\text{-system}, 4 \text{H}, 2 \text{PhC}H_2), 5.35 \ (s, 1 \text{H}, \text{CHCOO}); 6.18 \ (d, J = 6.5 \text{Hz}, 1 \text{H}, \text{NH}); 7.21-7.90 \ (m, 20 \text{H}, 4 \text{C}_6\text{H}_5).$

Preparation of benzyl trans-[4-(2-hydroxy-2-phenylethyl)-2-oxo-3-phenylacetamido-1-azetidinyl]-malonate (5). NaBH₄ (0.021 g, 0.56 mmol) was added to 4 (0.340 g, 0.56 mmol) in abs. ethanol (20 ml) at 0°. After stirring for 1 h at 0° and 20 min at 25°, pH 4.5 buffer solution (20 ml) was added and the solution extracted with CH₂Cl₂. Drying (MgSO₄) and evaporation of the solvent afforded a total of 0.232 g (68%) of alcohol 5, as a mixture of 2 diastereoisomers which were separated by flash chromatography with AcOEt/petroleum ether 3:7; 0.178 g of less polar and 0.054 g of more polar materials were isolated).

Less polar fraction. - IR. (film): 3400 (OH), 3300 (NH), 1775 (β-lactam), 1750 (ester), 1665 (amide). - NMR. (200 MHz, CDCl₃): 1.95 ($d \times d \times d$, J = 3.3, 9.0 and 14.5 Hz, 1 H, one H of H₂C-C(4)); 2.26 ($d \times d \times d$, J = 4.5, 9.5 and 14.5 Hz, 1 H, the other H of H₂C-C(4)); 3.13 (d, J = 5.2 Hz, 1 H, OH); 3.55 (g, 2 H, PhCH₂CO); 4.05 ($d \times d \times d$, J = 2.2, 4.5 and 9.0 Hz, 1 H, H-C(3)); 4.68 ($d \times d$, J = 2.2 and

6.5 Hz, 1 H, H-C(4)); 4.92 ($d \times d \times d$, J = 3.3, 5.2 and 9.5 Hz, 1 H, PhCHOH); 5.14, 5.16 (2 AB-system, 4 H, 2 PhCH₂O); 5.22 (s, 1 H, CHCOO); 6.35 (d, J = 6.5 Hz, 1 H, NH); 7.20–7.37 (m, 20 H, 4 C₆H₅).

More polar fraction. – IR. (film): 3350 (OH), 3300 (NH), 1775 (β-lactam), 1750 (ester), 1660 (amide). – NMR. (200 MHz, CDCl₃): 1.92 ($d \times d \times d$, J = 10.0, 10.0 and 14.0 Hz, 1H, one H of H₂C-C(4)); 2.20 ($d \times d \times d$, J = 3.0, 4.0 and 14.0 Hz, 1H, the other H of H₂C-C(4)); 3.60 (s, 2 H, PhCH₂CO); 4.00 ($d \times d \times d$, J = 2.2, 4.0 and 10.0 Hz, 1H, H-C(3)); 4.40 (d, J = 4.4 Hz, 1H, OH); 4.68 (m, 1H, dC(OH)Ph); 4.71 ($d \times d$, d = 2.2 and 6.0 Hz, 1H, H-C(4)); 5.12 (s, 2 H, PhCH₂O); 5.18 (dB-system, 2 H, PhCH₂O); 5.26 (s, 1H, CHCOO); 6.35 (d, d = 6.0 Hz, 1H, NH); 7.20-7.38 (m, 20 H, 4 C₆H₅).

Preparation of benzyl [4-(2-chloro-2-phenylethyl)-2-oxo-3-phenylacetamido-1-azetidinyl]malonate (7) and benzyl [2-oxo-3-phenylacetamido-4-styryl-1-azetidinyl]malonate (9). Methanesulfonyl chloride (0.07 g, 0.6 mmol) was added at 25° to the alcohol 5 (0.121 g, 0.2 mmol) in CH_2Cl_2 (2 ml) containing pyridine (0.048 g, 0.6 mmol). After stirring for 20 h, CH_2Cl_2 (20 ml) was added and the solution washed with water (3×5 ml), dried (MgSO₄) and evaporated to give 0.076 g (61%) of 7 and 0.025 g (21%) of 9, after flash chromatography with AcOEt/petroleum ether 1:4.

Data of 9. - IR. (film): 3300 (NH), 1775 (β -lactam), 1750 (ester), 1670 (amide). - NMR. (200 MHz, CDCl₃): 3.65 (s, 2 H, PhC H_2 CO); 4.57 ($d \times d$, J = 2.5 and 9.0 Hz, 1H, H-C(3)); 4.84 ($d \times d$, J = 2.5 and 8.0 Hz, 1H, H-C(4)); 5.08, 5.24 (2 s, 4 H, 2 PhC H_2 O); 5.28 (s, 1 H, CHCOO); 6.20 (d, J = 8.0 Hz, 1H, NH); 6.22 ($d \times d$, J = 9.0 and 16.0 Hz, 1H, PhCH = CH); 6.60 (d, J = 16 Hz, 1H, PhCH = CH); 7.25-7.45 (m, 20 H, 4 C $_6$ H₅).

REFERENCES

- [1] G. Lowe & D. D. Ridley, J. Chem. Soc., Chem. Commun. 1973, 328; J. Chem. Soc., Perkin 1 1973, 2024.
- [2] D. M. Brunwin, G. Lowe & J. Parker, J. Chem. Soc., Chem. Commun. 1971, 865; J. Chem. Soc. (C) 1971, 3756.
- [3] R.A. Firestone, J.L. Fahey, N.S. Maciejewicz, G.S. Pater & B.G. Christensen, J. Med. Chem. 20, 551 (1977).
- [4] A. K. Bose, M. S. Manhas, J. S. Chib, P. S. Chawla & B. Dayal, J. Org. Chem. 39, 2877 (1974).
- [5] T. W. Doyle, B. Belleau, B. Y. Luh, C.F. Ferrari & M.P. Cunningham, Can. J. Chem. 55, 468 (1977).
- [6] G. H. Hakimelahi & G. Just, Can. J. Chem. 57, 1939 (1979).
- [7] H.B. Kagan, A. Marquet & J. Jacques, Bull. Soc. Chim. France 1960, 1079.
- [8] G. H. Hakimelahi & G. Just, Can. J. Chem. 57, 1932 (1979).
- [9] G. H. Hakimelahi & G. Just, Can. J. Chem. 59, 941 (1981).